MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.








ψ     [ / ]   /[

][   ) [

,] / [    ]     .




ψ        / [ [ []

  ] ]   

 .




   / ]]   ) [[ ][

ψ

] ]  .



 ψ   / [ [ ] [

] ] 
ψ

] /    .



ψ  /     / [ ]  [

  ) [[ ][

]ψ

] .   . 



ψ         [ [ ] [

] ] 
ψ

]   .



 ψ        [ [ ][

] 
ψ

]]   .




ψ       / [ 

[ ] [

]] ]    .






ψ   / [ [ ]]

]
ψ

] /     .




*  [ ]]


ψ[

] / ] ]] .








    [[ ]]/

] [
]ψ

]] .





ψ [[ ]]

 ][

]ψ

]/ ]  .










  / [ [ ]]


ψ ]  .




ψ      [  [ ] [

][   ψ ] / ]    .






ψ     [

]] /      [[ ]]

     .






ψ  [[[ ]]  ) [

ψ [
]] ]










ψ     [ [[ ]]

  )[

,] /  ψ     .



   [[ ]] /   )[

]

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]




De acordo com a hipótese de de Broglie, todo objeto no universo está associado a uma onda. Assim, todo objeto, de uma partícula elementar a átomos, moléculas e planetas e além, está sujeito ao princípio da incerteza.

A função de onda independente do tempo de uma onda plana monomodo de número de onda k0 ou momento p0 é:[11]regra de Born afirma que isso deve ser interpretado como uma função de amplitude de densidade de probabilidade no sentido de que a probabilidade de encontrar a partícula entre a e b é:No caso da onda plana monomodo,  é 1 se  e 0 caso contrário. Em outras palavras, a posição da partícula é extremamente incerta no sentido de que ela poderia estar essencialmente em qualquer lugar ao longo do pacote de ondas.

Por outro lado, considere uma função de onda que é uma soma de muitas ondas, que podemos escrever como:onde An representa a contribuição relativa do modo pn para o total geral. As figuras à direita mostram como com a adição de muitas ondas planas, o pacote de ondas pode se tornar mais localizado. Podemos levar isso um passo adiante para o limite do contínuo, onde a função de onda é uma integral sobre todos os modos possíveis:com  representando a amplitude desses modos e é chamada de função de onda no espaço de momento. Em termos matemáticos, dizemos que  é a transformada de Fourier de  e que x e p são variáveis ​​conjugadas. Adicionar todas essas ondas planas tem um custo, ou seja, o momento se tornou menos preciso, tendo se tornado uma mistura de ondas de muitos momentos diferentes.[12]

Uma maneira de quantificar a precisão da posição e do momento é o desvio padrão σ. Como  é uma função de densidade de probabilidade para posição, calculamos seu desvio padrão.

A precisão da posição é melhorada, ou seja, σx reduzido, usando muitas ondas planas, enfraquecendo assim a precisão do momento, ou seja, σp aumentado. Outra maneira de afirmar isso é que σx e σp têm uma relação inversa ou são pelo menos limitados por baixo. Este é o princípio da incerteza, cujo limite exato é o limite de Kennard.





Comentários

Postagens mais visitadas deste blog